Page images
PDF
EPUB

be termed square frames, the others being oblong, but the latter shape appears to possess the most all-round advantages to the modern bee-keeper Amid the different climatic conditions of so vast a continent as America, variation in size, and in the capacity of frames used, is in some measure accounted for

British

ard" frame.

-17

In the British Isles, though the conditions are variable enough, they are less extreme, and, fortunately for those engaged in the pursuit, only one size of frame is acknowledged by "Stand- the great majority of bee-keepers, viz. the British Bee-keepers' Association "Standard" (fig. 14). This frame, the outside measurement of which is 14 by 84 in., was the outcome of deliberations extending over a considerable time on the part of a committee of well-known bee-keepers, specially appointed in 1882 to consider the matter. In this way, whatever type or form of hive is used, the frames are interchangeable. Differences in view may, and do, exist regarding the thickness of the wood used in frame-making, but the outside measurement never varies. Notwithstanding this fact, the advancement of apiculture and the continuous development of the modern frame-hive and methods of working have proceeded with such rapidity, both in England and in America, that hives and appliances used prior to 1885 are now obsolete.

FIG. 14.-Standard Frame.

It may, therefore, be useful to compare the progress made in the United States of America and in Great Britain in order to show that, while the industry is incomparably larger and of more importance in America and Canada than in Great Britain, British bee-keepers have been abreast of the times in all things apicultural. The original Langstroth hive was single-walled, held ten frames (size 17 by 9 in.), and had a deep roof, made to cover a case of small honey boxes like the sections now in use; but the cumbersome projecting porch and sides, made to support the roof, are now dispensed with, and the number of frames reduced to eight. Although various modifications have since been made in minor details-all tending to improvementits main features are unaltered. The typical hive of America is the improved Langstroth (fig. 15), which has no other covering for the frame tops but a flat roof-board allowing in. space between the roof and A top-bars for bees to pass from frame to frame. Consequently, on the roof being raised B the bees can take wing if not prevented from doing so. This feature C finds no favour with British bee-keepers, nevertheless the "improved Langstroth" is a useful and simple hive, moderate in price,

FIG. 15.-Langstroth Hive. (Redrawn from the ABC of Bee-Culture, published by the A. I Root Co., Medina, Ohio, U S. A.)

Winter cellars for becs.

and no doubt efficient, but not suitable for bees wintered on their summer stands, as nearly all hives are in Great Britain. American bee-keepers, therefore, find it necessary to provide underground cellars, into which the bees are carried in the fall of each year, remaining there till work begins in the following spring. Those among them who cannot, for various reasons, adopt the cellar-wintering plan are obliged to provide what are termed "chaff-covers " for protecting their bees in winter. Of late years they have also introduced, as an improvement, the plan long followed in England of using double-walled chaff-packed hives. The difference here is that packing is now dispensed with, it being found

that bees winter equally well with an outer case giving 1) in. of free space on all sides of the hive proper, but with no packing in between. Thus no change is needed in winter or summer, the air-space protecting the bees from cold in winter and heat in summer. Another point of difference between the English and American hive is the roof, which being gable-shaped in the former allows warm packing to be placed directly on the frame tops, so that the bees are covered in when the roof is removed and may be examined or fed with very little disturbance. Again, the American hive is, as a general rule, set close down on the ground, while stands or short legs are invariably used in Great Britain. One of the best-known hives in England is that known as the W.B.C. hive, devised in 1890 by W. Broughton Carr. Figs. 16 and 17 explain its construction and, as will be seen, it is equally suitable when working for comb or for extracted honey.

[graphic]

tractors.

Various causes have contributed to the development of the modern hive, the most important of which are the improvements in methods of extracting honey from combs, and in the manufacture of combfoundation. Regarding the first of these, it cannot be said that the honey extractor, even in FIG. 16.-Exterior, W.B.C. Hive. its latest form, differs very much from the original machine (fig. 18) invented by Major Hruschka, an officer in the Italian army, who in later life became an enthusiastic apiculturist. Hruschka's extractor, first brought to public Honey ex notice in 1865, may be said to have revolutionized the bee-industry as a business. It enabled the honey producer to increase his output considerably by extracting honey from the cells in most cleanly fashion without damaging the combs, and in a fraction of the time previously occupied in the draining, heating and squeezing process. At the same time the combs were preserved for refilling by the bees, in lieu of melting them down for wax. The principle of the honey extractor (throwing the liquid honey out of the cells by centrifugal force) was discovered quite by accident. Major FIG. 17.-Interior, W.B.C. Hive. Hruschka's little son chanced to have in his hand a bit of unsealed comb-honey in a basket to which was attached a piece of string, and, as the boy playfully whirled the basket round in the air, his father noticed a few drops of honey,

[graphic]
[graphic]

thrown out of the comb by the centrifugal force employed to keep the basket suspended. The value of the idea at once struck him; he set to work on utilizing the principle involved, and ere long had constructed a machine admirably adapted to serve its purpose. Since that time changes, of more or less value, have been introduced to meet present-day requirements. One of the first to take advantage of Hruschka's invention was Mr A. I. Root, who in 1869 perfected a machine on similar lines to the Hruschka one but embodying various improve ments. This appliance, known as the " Novice Honey Extractor," became very popular in the United States of America, but it had the fault of wasting time in removing

FIG. 18.-Hruschka Extractor. (Redrawn from the A B C of Bee-Culture, published by the A. 1. Root Co., Medina, the combs for reversing after Ohio, U.S.A.) one side had been emptied of its contents. A simple form of machine for extracting honey by centrifugal force was brought to notice in England in 1875, and was soon improved upon, as will be seen in fig. 19, which shows a section of one of the best English machines at that time. Various plans were tried in America to improve on the "Novice" machine, and Mr T. W. Cowan, who was experimenting in the same direction in England, invented in the year 1875 a machine called the " Rapid," in which the combs were reversed without removal of the cages (fig. 20). The framecases-wired on both sides-are hung at the angles of a revolving ring of iron, and the reversing process is so simple and effective that the "Cowan" reversible frame has been adopted in all the best machines both in Great Britain and in America

[ocr errors]

00

Wit

[ocr errors]
[ocr errors]

wb..

7972

66

The latest form of honey extractor used in America is that known as the "Four-frame A Cowan." Fig. 21 shows the working part or inside of the appliance. In this, and indeed in all extractors used in large sb apiaries, the Cowan or reversible frame principle is used. Each of the four cages in which the combs are placed is swung on a pivot attached to the side, and when the outer faces of the combs are emptied the cages are reversed without removal from the machine for emptying the opposite sides of combs. The further development of the honey extractor has of late been limited to an increase in the size of machine used, in order to save time and manual

FIG. 19.-Diagram of the Raynor

Extractor.

[merged small][ocr errors][ocr errors][merged small]

C, Perpendicular section of side labour, and thus meet the re

of cage enlarged.

Soc, Outer casing.

Scientific and Practical.)

quirements of the largest honey producers, who extract honey wb, Metal webbing. wn, Wire netting. by the car load. Some of the (From Cheshire's Bees and Beekeeping, largest machines-propelled by motor power-are capable of taking eight or more frames at one time. It may also be claimed for the honey extractor that it does away with the objection entertained by many persons to the use of honey, by enabling the apiarist to remove his produce from the honey-combs in its purest form untainted by crushed brood and untouched by hand.

[ocr errors]

Comb

foundation.

Next in importance, to bee-keepers, is the enormous advance made in late years through the invention of a machine for manufacturing the impressed wax sheets known as "comb foundation," aptly so named, because upon it the bees build the cells wherein they store their food. We need not dwell upon the evolution from the crude idea, which first took form in the endeavour to compel beesto build straight combs in a given direction by offering them a guiding line of wax along the under side of each top-bar of the frame in which the combs were built; but we may glance at the more important improvements which gradually developed as time went on. In 1843 a German bee-keeper, Krechner by name, conceived the idea of first dipping fine linen into molten wax, then pressing the sheets so made between rollers, and thus forming a waxen midrib on which the bees would build their combs. This experiment was partially successful, but the instinctive dislike of bees to anything of a fibrous nature caused them com

pletely to spoil their work FIG. 20.-Cowan's rapid Extractor. of comb-building in the endeavour to tear or gnaw away the linen threads whenever they got in touch with them. In 1857 Mehring (also a German) made a further advance by the use of wooden moulds for casting sheets of wax impressed with the hexagonal form of the bee-cell. These sheets were readily accepted by the bees, and afterwards plates cast from metal were employed, with so good a result as to give to the bees as perfect a midrib as that of natural comb with the deep cell walls cut away. Fig. 22 shows a portion of one of these metal plates with worker-cells of natural size, i.e. five cells to the inch. Thus Mehring is justly claimed as the originator of comb-foundation, though the value of his invention was less eagerly taken advantage of even in Germany than its merits deserved. Probably it was ahead of the times, for not until nearly twenty years later was any prominence given to it, when Samuel Wagner, founder and editor of the American Bee Journal, became impressed with Mehring's invention and warmly advocated it in his paper. Mr Wagner first conceived the idea of adding slightly raised side walls to the hexagonal outlines of the cells, by means of which the bees are supplied with the material for building out one-half or more of the complete cell walls or sides. The manifest advantage of this was at once realized by practical American apiarists as saving labour to the bees and money to the

[graphic]

bee-keeper. One of the first (Redrawn from the A B C of Bee-Culture, to recognize its value was Mr published by the A. I. Root Co., Medina, A. L. Root, of Medina, Ohio, Ohio, U.S.A.) who suggested the substitution of embossed rollers in lieu of flat plates, in order to increase the output of foundation and lessen its cost to the bee-keeper. He lost no time in giving practical shape to his views, and mainly through the inventive genius of a skilled machinist (Mr A. Washburn) the A. I. Root Co. constructed a roller press (fig. 23) for producing foundation in sheets. This form of machine came

into extensive use in the United States of America and afterwards in Great Britain. The first roller press was made by the A. I. Root Co. and imported by Mr William Raitt, a Scottish bee-keeper of repute in Perthshire, N.B. In all roller machines used at that time the plain sheets of wax were first made by the " dipping" process, i.e. by repeated dippings of damped boards in molten wax (kept in liquid condition in tanks immersed in hot water) until the sheet was of suitable thickness for the purpose. The prepared sheets were then passed through the rollers, and after being cut out and trimmed were ready for use.

FIG. 22. Portion of a type-metal plate i.e. form of Comb Midrib (five cells to the inch).

Owing to the enormous demand for comb-foundation at that time various devices were tried with the view of securing (1) more rapid production, and (2) a foundation thin enough to be used in surplus chambers when working for comb-honey intended for table use. Foremost among the able men who experimented in this latter direction was Mr F. B. Weed, a skilful American machinist, who, after some years of strenuous effort, succeeded in devising and perfecting special rollers and dies, by the use of which foundation was produced with a midrib so thin as to compare favourably with natural comb built by the bees. "Dipping," however, proved not only a stumbling-block to speed but to the production of continuous sheets of wax; and in the end Mr Weed, acting in concert with Mr A. I. Root (who

(From Cheshire's Bees and Bee-keeping, Scientific and Practical.)

FIG. 23.-Foundation Machine.

(From Cheshire's Bees and Bee-keeping, Scientific and Practical)

placed the resources of his enormous factory at his disposal), devised and perfected machinery-driven by motor power-for manufacturing foundation by what is known as the "Weed" process. By this process "dipping" is abolished, and in its latest form sheets of wax of any length are produced, passed between engraved rollers 6 in. in diameter, cut to given lengths, trimmed, counted and paper-tissued ready for packing, at a rate of speed previously undreamt of.

Practical Management of Bees.-Among the world of insects

| the honey-bee stands pre-eminent as the most serviceable to mankind; from the day on which the little labourer leaves its home for the first time in search of food, its mission is undoubtedly useful. Launched upon an unknown world, and guided by unerring instinct to the very flowers it seeks, the bee fertilizes fruit and flowers while winging its happy flight among the blossoms, gathering pollen for the nurslings of its own home and honey for the use of man. Nothing seems to be lost, nor can any part of the bee's work be accounted labour in vain; the very wax from which the insect builds the store-combs for its food and the cells in which its young are hatched and reared is valuable to mankind in many ways, and is regarded to-day no less than in the past ages as an important commercial product. The hive bee is, moreover, the only insect known to be capable of domestication, so far as labouring under the direct control of the bee-master is concerned, its habits being admirably adapted for embodying human methods of working for profit in our present-day life.

In dealing with the practical side of apiculture it will not be necessary to do more than mention the salient points to be considered by those desirous of acquiring more complete knowledge of the subject. Authoritative text-books specially written for the guidance of bee-keepers are numerous and cheap, and on no account should any one engage in an attempt to manage bees on modern lines without a careful perusal of one or more of these. Bearing this in mind the reader will understand that so much of the natural history of the honey-bee as is necessary for elucidating the practical part of our subject may be comprised in (1) the life of the insect, (2) its mission in life, and (3) utilizing to the utmost the brief period during which it can labour before being worn out with toil.

[graphic]

Sex of

bees.

A prosperous bee-colony managed on modern lines will in the height of summer consist of three kinds of bees: a queen or mother-bee, a certain number of drones, and from 80,000 to 100,000 workers. With regard to sex, the queen is a fully-developed female, the drones are males and the workers may be termed neuters or partially developed females. These last possess ovaries like the queen, but shrunken and aborted so

[graphic]

as to render the insect normally incapable of eggproduction. The relative importance of the three kinds of bees differs greatly in degree and in somewhat curious fashion. For in

a

b

FIG. 24.-Hive bee (Apis mellifica).

a, Worker; b, queen; c, drone.

(From Cheshire's Bees and Bee-keeping, Scientific and Practical.)

Loss of quecas.

stance, the queen (or "king" of the hives as it was termed by our forefathers) is of paramount importance at certain seasons, her death or disablement during the period when the male element is absent meaning extinction of the whole colony. Fecundation would under such conditions be impossible, and without this the eggs of a resultant queen will produce nothing but drones. During the summer season, however (from May to July), when drones are abundant, the loss of a queen is of comparatively little moment, as the workers can transform eggs (or young larvae not more than three days old), which would in the ordinary course produce worker bees, into fully-developed queens, capable of fulfilling all the maternal duties of a mother-bee. The value of this wonderful provision of nature to the bee-keeper of to-day may be estimated from the fact that bees managed according to modern methods are necessarily subject to so much manipulating or handling, that fatal accidents are as likely to happen in bee-life as among human beings.

Authorities differ with regard to the age during which the queen-bee is useful to the bee-keeper who works for profit. Under normal conditions the insect will live for three, four or sometimes five years, but the stimulation given, together with

the high-pressure system followed in modern bee-management, | comes the almost human foresight with which the bee prevents exhausts the period of her greatest fecundity in two years, so the inevitable chaos created by an overcrowded home. There that queens are usually superseded after their second season is no cell-room either for storing the abundant supply of food has expired and egg-production gradually decreases. This can constantly being brought in, or for the thousands of eggs which hardly cause wonder if it is borne in mind that for many weeks a prolific queen will produce daily as a consequence of general during the height of the season a prolific queen will deposit eggs prosperity; therefore unless help comes from without an exodus at the rate of from two to three thousand every twenty-four is prepared for, and what is known as "swarming " takes hours. place.

The drone.

Drones (or male bees) are more or less numerous in hives according to the skill of the bee-keeper in limiting their production. It is admitted by those best able to judge that the proportion of about a hundred drones in each hive is conducive to the prosperity of the colony, but beyond that number they are worse than useless, being nonproducers and heavy consumers. Thus in times of scarcity, which are not infrequent during the early part of the season, they become a heavy tax upon the food-supply of the colony at the critical period when brood-rearing is accelerated by an abundance of stores, while shortness of food means a fallingoff in egg-production. The modern bee-keeper, therefore, allows just so much drone comb in the hive as will produce a sufficient number of drones to ensure queen-mating, while affording to the bees the satisfaction of dwelling in a home equipped according to natural conditions, and containing all the elements necessary to bee-life. The action of the bees themselves makes this point clear, for when the season of mating is past the drone is no longer needed, the providing of winter stores taking first place in the economy of the hive. So long as honey is being gathered in plenty drones are tolerated, but no sooner does the honey harvest show signs of being over than they are mercilessly killed and cast out of the hive by the workers, after a brief idle life of about four months' duration. Thus the "lazy yawning drone," as Shakespeare puts it, has a short shrift when his usefulness to the community is ended. Finally we have the aptly named worker-bee, on whom devolves the entire labour of the colony. The worker-bee is incapable of egg-production and can therefore take no part in the perpetuation of its species, so that individually its value to the community is infinitesimal. Yet it forms an item in a commonwealth, the members of which are in all respects equally well endowed. They are in turn skilled scientists, architects, builders, artisans, labourers and even scavengers; but collectively they are the rulers on whom the colony depends for the wonderful condition of law and order which has made the bee-community a model of good government for all mankind. Then so far as regards longevity, the period of a worker-bee's existence is not measured by numberLongevity ing its days but simply by wear and tear, the marvellous in bees. intricacy and wonderful perfection of its framework being so delicate in construction that after six or seven weeks of strenuous toil, such as the bee undergoes in summer time, the little creature's labour is ended by a natural death. On the other hand, worker-bees hatched in the autumn will seven months later be strong with the vigour of lusty youth; able to take their full share in the labour of the hive for six weeks or more in the early spring, which is the most critical period in the colony's existence; hence the value to the apiarist of bees hatched in the autumn.

The worker bee.

The mission of the worker-bee is work; not so much for itself as for the younger members of the community to which it belongs. We cannot claim for it the virtue of strict honesty with regard to the stranger, but for its own "kith and kin " it is a model of socialism in an ideal form, possessing nothing of its own yet toiling unceasingly for the good of all. The increasing warmth of each recurring spring finds the bee awake, and full of eagerness to be up and doing; its sole mission being apparently to accomplish as much work as possible while life lasts. The earliest pollen is sought out from far and near, and has its immediate effect upon the mother bee of the colony. If healthy and young she begins egg-laying at once, and brood-rearing proceeds at an ever-increasing rate as each week passes, until the hive is brimming over with bees in time for the first honey flow. Then

Swarm

Ing.

It would be difficult to imagine anything more exhilarating to a beginner in bee-keeping than the sight of his first hive in the act of swarming. The little creatures are seen rushing in frantic haste from the hive like a living stream, filling the air with ever-increasing thousands of bees on the wing. The incoming workers returning pollen-laden from the fields, carried away by the prevailing excitement, do not stop to unload their burdens in the old home, but join the enthusiastic emigrants, tumbling over each other pell-mell in the outrush; among them the queen of the colony will in due course have taken her place, bound like her children for a new home. It soon becomes apparent to the onlooker when the queen has joined the flying multitude of bees in the air, for they are seen to be closing up their ranks, and in a few moments begin to form a solid cluster, usually on the branch of a small tree or bush close to the ground. When this stage of swarming is reached the bee-keeper has but to take his hiving skep, hold it under the swarm, and shake the bees into it, preparatory to transferring them into a frame-hive already prepared for their reception. The process of hiving a swarm is very simple and need not occupy many moments of time under ordinary conditions, but so many unlooked-for contingencies may arise that the apiarist would do well to prepare himself beforehand by carefully reading the directions in his text-book.

Hiving

swarms.

[merged small][graphic]

FIG. 25.-Honeycomb. Metamorphoses of the Honey Bee.

(From Cheshire's Bees and Bee-keeping, Scientific and Practical.) from egg to perfect insect, with the latter biting their way out of sealed cells. It also shows sealed honey and pollen in cells, &c. To familiarize himself with the various objects depicted, all of which are drawn from nature, will not only help the reader to understand the different phases of bee-life during the swarming season, but tend to increase the interest of beginners in the pursuit. "Early drones, early swarms was the ancient bee-man's favourite adage, and the skilled apiarist of to-day

Management of an Apiary.-The main consideration in establishing an apiary is to secure a favourable location, which means a place where honey of good marketable quality may be gathered from the bee-forage growing around without any planting on the part of the bee-keeper himself. It is impossible to deal here with the varying conditions under which apiculture is carried on in all parts of the world, but, as a rule, the same principle applies everywhere. The bee industry prospers greatly in America, where amid the vast stretches of mountain Bee- and canyon in California the bee-forage extends for forage la the U.S.A. miles without a break, and the climatic conditions are so generally favourable as to reduce to a minimum the chances of the honey crop failing through adverse weather. The bee-keeper's object is to utilize to the utmost the brief space of a worker-bee's life in summer, by adopting the best methods in vogue for building up stocks to full strength before the honey-gathering time begins, and preparing for it by the exercise of skill and intelligence in carrying out this work.

methods.

experiences the same pleasurable thrill as did the skeppist of | face from stings when working among bees; as experience is old at the sight of the first drone of the year, which betokens gained the veil is not always used. The man who is hasty and an early swarm. As the drones increase in number queen-cells nervous in temperament, who fears an occasional sting, and are formed, unless steps be taken to turn aside the swarming resents the same by viciously killing the bee that inflicts it impulse by affording additional room beforehand in the hive. will rarely make a good apiarist. The methods of handling bees The above brief outline of the guiding principles of natural vary in different countries, this being in a great measure swarming is merely intended as introductory to the fuller accounted for by the number of hives kept. Very few apiaries information given in a good text-book. in the United Kingdom contain more than a hundred hives: consequently the British bee-keeper has no need for employing the forceful or " hustling" methods found necessary in America, where the honey-crop is gathered in car-loads and the British hives numbered by thousands. It naturally follows and that bee-life is there regarded very slightly by com- America parison, and the "bee-garden" in England becomes the "bee-yard" in America, where the apiarist when at work must thoroughly protect himself from being stung, and, safe in his immunity from damage, cares little for bee-life in getting through his task, the loss of a few hundred bees being considered of no account. There are, however, other reasons, apart from humanity, to account for the difference in handling bees as advocated in the United Kingdom. The great majority of apiaries owned by British bee-keepers are located in close proximity to neighbours; consequently a serious upset among the bees would in many cases involve an amount of trouble which should if possible be avoided; therefore quietness and the exercise of care when manipulating are always recommended by teachers, and practised by those who wisely take their lessons to heart.

[graphic]

Value of pollen.

In the United Kingdom there is a difference of several weeks in the honey season between north and south. Swarming usually begins in May in the south of England, and in mid-July in the north of Scotland, the issue of swarms coinciding with the early part of the main honey flow. The weather naturally more precarious in autumn than earlier in the year, and chances of success proportionately smaller for northern bee-men, but the disadvantage to the latter is more than compensated for by the heather season, which extends well into September. With regard to the British bee-keeper located in the south, the early fruit crop is what concerns him most, and where pollen (the fertilizing dust of flowers) is plentiful his bees will make steady progress. If pollen is scarce, a substitute in the form of either pea-meal or wheaten flour must be supplied to the bees, as brood-rearing cannot make headway without the nitrogenous element indispensable in the food on which the young are reared. But the main honey-crop of both north and south is gathered from the various trifoliums, among which the white Dutch or common clover The queen (Trifolium repens) is acknowledged to be the most plants. important honey-producing plant wherever it grows. In the United States, Canada, Australia, New Zealand and in many other parts of the world honey of the finest quality is obtained from this " queen of bee-plants," and in lesser degree from other clovers such as sainfoin, alsike (a hybrid clover), trefoil, &c.

of bee

Before undertaking the management of a modern apiary, the bee-keeper should possess a certain amount of aptitude for the pursuit, without which it is hardly possible to succeed. He must also acquire the ability to handle bees judiciously and well under all imaginable conditions. In doing this it is needful to remember that bees resent outside interference with either their work or their hives, and will resolutely defend themselves when aroused even at the cost of life itself. Experience has also proved that, when alarmed, bees instinctively begin to fill their honey-sacs with food from the nearest store-cells as a safeguard against contingencies, and when so provided they are more amenable to interference. The bee-keeper, therefore, by the judicious application of a little smoke from smouldering fuel, blown into the hive by means of an appliance known as a beesmoker, alarms the bees and is thus able to manipulate the frames of comb with ease and almost no disturbance. The smoker (fig. 26) devised by T. F. Bingham of Farwell, Michigan, U.S.A., is the one most used in America and in the United Kingdom. No other protection is needed beyond a bee-veil of fine black net, which slipped over a wide-brimmed straw hat protects the

FIG. 26.-Bee-Smoker. (Redrawn from the ABC ef Bes Culture, published by the A. 1. Root Having made himself proficient Co., Medina, Ohio, USA) in practical bee-work and chosen a suitable location for his apiary, the bee-keeper should carefully select the particular type of hive most suited to his means and requirements. This point settled, uniformity is a location. Choosing secured, and all loose parts of the hives being interchangeable time will be saved during the busy season when time means money. Beginning with not too many stocks he can test the capabilities of his location before investing much capital in the undertaking, so that by utilizing the information already given and adopting the wise adage "make haste slowly" he will realize in good time whether it will pay best to work for honey in comb or extracted honey in bulk; not only so, but the knowledge gained will enable him to select such appliances as are suited to his needs. As a rule, it may be said that the man content to start with an Bee-keepapiary of moderate size-say fifty stocks-maying for realize a fair profit from comb-honey only; but so profit. limited a venture would need to be supplemented by some other means before an adequate income could be secured. On the other hand, the owner of one or two hundred colonies would find it more lucrative to work for extracted honey and send it out to wholesale buyers in that form. By so doing a far greater weight of surplus per hive may be secured, and extracted honey will keep in good condition for years, while comb-honey must be sold before granulation sets in. At the same time it is but fair to say that bee-culture in the United Kingdom, if limited to honey-production alone, is not sufficiently safe for entire reliance to be placed on it for obtaining a livelihood. The uncertain climate renders it necessary to include either other branches of the craft less dependent on warmth and sunshine, or to combine it with fruit-growing, poultry-rearing, &c. Under such conditions the bees will usually occupy a good position in the balance-sheet.

Another indispensable feature of good bee-management is "forethought," coupled with order and neatness; the rule of

« PreviousContinue »