Eléments de geométrie: avec des notes

Front Cover
F. Didot, 1812 - Geometry - 431 pages

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Selected pages

Other editions - View all

Common terms and phrases

Popular passages

Page 2 - D'un point à un autre on ne peut mener qu'une seule ligne droite. D 5. Deux grandeurs, ligne, surface ou solide, sont égales, lorsqu'étant placées l'une sur l'autre elles coïncident dans toute leur étendue. PROPOSITION PREMIÈRE. THÉORÈME. Par im point
Page 7 - Deux triangles sont égaux, lorsqu'ils ont un angle égal compris entre deux côtés égaux, chacun à chacun (Euclide, I, 4).
Page 283 - ... de formes différentes ; on peut aussi changer la position de l'arête longitudinale du prisme par rapport au plan de la base , enfin on peut combiner ces deux changements l'un avec l'autre ; et il en résultera toujours un prisme dont les arêtes ou côtés n'auront pas changé. D'où l'on voit que les arêtes seules ne suffisent pas dans ce cas pour déterminer le solide.
Page 161 - SO ; donc toute pyramide a pour mesure le tiers du produit de sa base par sa hauteur. Corollaire I. Toute pyramide est le tiers du prisme de même base et de même hauteur.
Page 397 - B y (a) cos. c = cos. a cos. b -f- sin. a sin. b cos. ,.A1 s.BV. s.CJ La combinaison de ces trois équations donne la résolution de tous les cas possibles des triangles sphériques. cos.
Page 44 - Donc tout angle inscrit a pour mesure la moitié de l'arc compris entre ses côtés.
Page 7 - Dans tout triangle un côté quelconque est plus petit que la somme des deux autres.
Page 175 - II. Le rayon de la sphère est une ligne droite menée du centre à un point de la surface ; le diamètre ou axe est une ligne passant par le centre, et terminée de part et d'autre à la surface. Tous les rayons de lajsphère sont égaux ; tous les diamètres sont égaux et doubles du rayon.
Page 133 - Car on a défini polyèdres réguliers ceux dont toutes les faces sont des polygones réguliers égaux, et dont tous les angles solides sont égaux entre eux. Ces conditions ne peuvent avoir lieu que dans un petit nombre de cas.
Page 252 - On démontre immédiatement par la superposition, et sans aucune proposition préliminaire que deux triangle* sont égaux , lorsqu'ils ont un côté égal adjacent à deux angles égaux chacun à chacun. Appelons p le côté dont il s'agit, A et B les deux angles adjacents, C le troisieme angle.

Bibliographic information